γ-Butyrolactone, an Alternative Source of Chiral Iodo Derivatives. ## Dominique de Kermadec and Michelle Prudhomme* Université Blaise Pascal, Laboratoire de Chimie Organique Biologique associé au CNRS, 63177 Aubière Cedex, France. Abstract: An efficient synthesis of (3S) 1,3-di-*tert*-butyldimethylsilyloxy-6-iodohexane, a chiral iodo derivative useful for the preparation of functionalised 1,7-dioxaspiro[5.5]undecanes from 1-butyrolactone is described. In several total syntheses of the ionophore antibiotic A.23187 and other structural analogues in this series, functionalised 1,7-dioxaspiro[5.5] undecanes were obtained by coupling iodo derivatives A (R' = H or CH₃; R₃ = R₄ = cyclohexylidene or isopropylidene; R₃ = TBDPS, R₄ = TBDMS) with a dithiane¹, a tri-n-butylstannyl-dihydropyran² or a 2-phenylsulphonyl-tetrahydropyran³. We report here the synthesis of A (R' = H, R₃ = R₄ = TBDMS) from γ -butyrolactone. Takacs *et al.*⁴ performed homologation of esters to α,β -unsaturated esters using diisobutylaluminium hydride (DIBAL-H) in the presence of a lithio-trialkylphosphonate. This method applied to γ -butyrolactone afforded the trans ester 2, the hydroxyl group of which was protected as a benzyl ether. Classical methods using NaH and benzyl bromide are not suitable because of the presence of a carbonyl function. The reaction was therefore performed with Ag₂O and benzyl bromide in DMF⁵⁻⁷ leading to the ester 3 which was further reduced to allylic alcohol 4 in the presence of DIBAL-H. Sharpless epoxidation of the trans alcohol 4 with L(+) diethyltartrate introduced the chirality. The epoxide was then reduced regiospecifically to diol 6 using dimethoxyethoxyaluminium hydride (Red-Al) in THF at -20°C according to the method of Finan and Kishi, 8 a) (EtO)₂P(O)CH₂CO₂Et, THF, -78°C, **nBuLi, DIBAL-H (54%); b) Ag₂O, BnBr, DMF, RT, 48 h \rightarrow 3 (69%); c) DIBAL-H, CH₂Cl₂/hexane, -78°C \rightarrow 4 (95%); d) Ti(OiPr)₄, L(+) diethyl tartrate, CH₂Cl₂, **nBuOOH, -23°C (68%); e) Red-Al, THF, -20°C \rightarrow 6 (85%); f) CF₃SO₃Si(CH₃)₂**.Bu, CH₂Cl₂, Et₃N, RT, 4h (91%); g) Na, NH₃ (84%); h) CH₃P(OC₆H₅)₃I, HMPA \rightarrow 9 (80%). The *tert*-butyldimethylsilyl group was chosen for the protection of the 2 hydroxyl functions of diol 6. Unlike cyclohexylidene and isopropylidene, this group is stable in subsequent coupling reactions of 9 with dithianes using *n*-butyllithium. It provides a non-volatile derivative in contrast to the acetonide which is volatile, and it is readily removed with *p*. TsOH which is used in the final cyclisation step to give spiroketals. The benzyl protecting group was then removed by aminolysis. Finally, several methods were tested for the conversion of the alcohol to the iodo derivative 9: N-iodosuccinimide, PPh₃ in CH₂Cl₂ provided 9 in only 41 % yield, the nucleophilic substitution via the corresponding mesylate (mesyl chloride, Et₃N, CH₂Cl₂ then KI, acetone) led to 9 in 53 % yield. The best yield (80 %) was obtained using methyl-triphenoxyphosphonium iodide (C₆H₅O)₃P⁺CH₃I⁻ in HMPA according to a method used in the chemistry of nucleosides. ¹⁰ This reaction sequence cannot be compared with those affording methylated iodo derivatives^{1,2} but involves fewer steps than that yielding the unmethylated iodo compound from benzaldehyde.³ ## References and notes (1) Nakahara, Y.; Fujita, A.; Beppu, K.; Ogawa, T., Tetrahedron, 1986, 42, 6465. (2) Boeckman, R.K.; Charette, A.B.; Abserom, T.; Johnston, B.H., J. Amer. Chem. Soc., 1991, 113, 5337. Diez-Martin, D.; Kotecha, N.R.; Ley, S.V.; Mantegani, S.; Carlos Menéndez, J.; Organ, H.M.; White, A.D., Tetrahedron, 1992, 48, 7899. 4) Takacs, J.M.; Helle, M.A.; Seely, F.L., Tetrahedron Lett., 1986, 27, 1257. (5) Kuhn, R.; Löw, I; Trischmann, H., Chem. Ber., 1957, 90, 203. (6) Camps; P.; Cardellach, J.; Font, J.; Ortuno, R.M.; Ponsati, O., Tetrahedron, 1982, 38, 2395. (7) Van Hijfte L.; Little R.D., J. Org. Chem., 1985, 50, 3942. (8) Finan, J.M.; Kishi, Y., Tetrahedron Lett., 1982, 23, 2719. (9) Prudhomme, M.; Dauphin, G.; Jeminet, G., J. Chem. Research, 1987, 420. (10) Verheyden, J.P.H.; Moffat, J.G., J. Org. Chem., 1970, 35, 3219. (11) Data for 2: v_{C=O}: 1730, v_{OH}: 3450 cm⁻¹. ¹H NMR: 1.2 (3H, t, J = 7.5 Hz, CH₃); 1.5-2.5 (4H, m, 2CH₂); 3.2-3.8 (3H, C₁-H₂, OH); 4.2 (2H, q, J = 7.5, 15 Hz, OCH₂CH₃); 5.8 (1H, d, J = 18 Hz, C₂-H); 6.9 (1H, m, C₃-H). 13 C NMR: 14.2 (CH₃); 28.6; 30.9 (C₄, C₅); 60.2; 61.5 (C₆, OCH₂CH₃); 121.6 (C₂); 148.9 (C₃); 166.8 (C₁). Data for 3: $v_{C=O}$: 1720 cm⁻¹. H NMR: 1.2 $(3H, I, J = 7.5 Hz, CH_3)$; $1.5-2.5 (4H, 2m, 2CH_2)$; $3.5 (2H, I, J = 6 Hz, C_6-H_2)$; $4.2 (2H, q, J = 6, 13 Hz, OCH_2CH_3)$; 4.6 (2H, s, I) $CH_2\phi$); 5.9 (1H, d, J = 17 Hz, C_2 -H); 7.9 (1H, m, C_3 -H); 7.5 (5H, m, aromatics). ¹³C NMR: 13.8 (CH₃); 27.8; 78.4 (C₄, C_5); 59.6 (OCH2CH3); 68.8 (C6); 72.4 (CH24); 121.4 (C3); 127.1; 127.9; 138.2 (aromatics); 148.1 (C2); 165.9 (C1). Data for 4: VOH : 3420cm⁻¹. ¹H NMR : 1.5-2.2 (4H, 2m, 2CH₂); 3.1 (1H, s, OH); 3.4 (2H, t, J = 6 Hz, C₆-H₂); 4.0 (2H, m, C₁-H₂); 4.5 (2H, s, CH₂\phi); 5.7 (2H, m, C₂-H, C₃-H); 7.5 (5H, m, aromatics). ¹³C NMR: 28.8; 29.2 (C₄, C₅); 63.4 (C₆); 69.6 (C₁); 72.8 (CH₂\phi); 127.6; 128.3; 129.6; 132.0; 148.5 (aromatics). Data for 5: $(\alpha)_{1}^{27} = -29$; v_{OH} : 3450 cm⁻¹. H NMR: 1.6-1.8 (4H, 2m, 2CH₂); 2.9-3.0 (2H, m, C₂-H, C₃-H); 3.4-3.8 (5H, m, C₆-H₂, C₁-H₂, OH); 4.6 (2H, s, CH₂\$\phi\$); 7.3 (5H, m, aromatics). ¹³C NMR: 26.1; 28.5 (C₄, C₅); 55.8; 58.7; 61.8; 69.6; (C₁, C₂, C₃, C₆); 72.9 (CH₂ ϕ); 127.7; 128.4; 138.4 (aromatics). <u>Data for 6</u>: [α] = -15; ν_{ΟΗ}: 3400 cm⁻¹. ¹H NMR: 1.5-1.8 (6H, m, 3CH₂); 3.5-4.0 (7H, m, C₁-H₂, C₃-H, C₆-H₂, 2OH); 4.5 (2H, s, CH₂φ); 7.4 (5H, m, aromatics). 13C NMR: 26.2; 35.0; 38.5 (C2, C4, C5); 61.5; 70.6; 71.6; 73.2 (C1, C3, C6, CH2\$\phi\$); 127.9; 128.6; 138.3 (aromatics). Data for 7: [ct]²⁵ = +11; ¹H NMR: 0.1 (12H, s, 2(CH₃)₂Si); 0.9 (18H, s, 2tBu); 1.5-1.8 (6H, m, 3CH₂); 2.4 (2H, t, J = 6.7 Hz, C_6 -H₂); 3.1 (2H, t, J = 7 Hz, C_1 -H₂); 3.7 (1H, m, C_3 -H); 4.5 (2H, s, C_4 -H); 7.3 (5H, m, aromatics). ¹³C NMR: 18.4 (Cquat. (Bu); 26.2 ((Bu); 26.1; 34.9; 40.9 (C2, C4, C5); 60.9; 69.9; 71.4; 73.1; (C1, C3, C6, CH2\phi); 127.1; 127.9; 128.1 (aromatics). Data for 8: $[\alpha]_{1}^{25} = +9$; v_{OH} : 3400 cm⁻¹. ¹H NMR: 0.0 (12H, s, 2(CH₃)₂Si); 0.9 (18H, s, 2tBu); 1.4-1.7 (6H, m, 3CH₂); 1.8 (1H, s, OH); 3.5-3.7 (4H, m, C₁-H₂, C₆-H₂); 3.9 (1H, m, C₃-H). ¹³C NMR: -5.0, -4.0 ((CH₃)₂Si); 18.3 (Cquat.tBu); 25.9 (tBu); 28.2; 33.7; 39.6 (C₂, C₃, C₅); 59.8 (C₆); 63.2 (C₁); 68.1 (C₄). Data for 9: $[\alpha]_{7}^{27} = +9$; ¹H NMR: 0.1 (12H, m, $2(CH_3)_2Si$; 0.9 (18H, s, 2tBu); 1.5-1.7 (4H, 2m, C_2 -H₂, C_4 -H₂); 1.9 (2H, m, C_5 -H₂); 3.2 (2H, t, J = 6.7 Hz, C_6 -H₂); 3.6 (2H, t, J = 6.3 Hz, C₁-H₂); 3.8 (1H, m, C₃-H). The protons were assigned from ¹H-¹H COSY correlations. ¹³C NMR: -5.1; -4.3 ((CH₃)₂Si); 7.4 (C₆); 18.4 (Cquat.tBu); 26.0 (tBu); 29.3; 38.2; 40.2 (C₂, C₄, C₅); 59.8 (C₁); 68.5 (C₃).